

The rising STAR of Texas

Discrete Mathematics Seminar

Time:	Friday, October 21, 2022, 1:00-2:00 PM (Central Time)
Title:	N-Set Distance-Labelings for Cycle Graphs
Speaker:	Alissa Shen, St. Stephen's Episcopal School, Austin, Texas
Zoom Link:	https://txstate.zoom.us/j/99924628868?pwd=czdJWVpWOHZIZE0vbHB
	QL1pWell6QT09
	ID: 999 2462 8868
	Passcode: 753321

Abstract:

Let G = (V, E) be a graph and C_m be the cycle graph with *m* vertices. In this talk, the distance labeling of the cycle graph C_m will be discussed. An *n*-set distance labeling of a graph *G* is the labeling of the vertices (with *n* labels per vertex) of *G* under certain constraints, depending on the distance between each pair of the vertices in *G*. The smallest value for the largest label in an *n*-set distance labeling of *G* is denoted by $\lambda_1^{(n)}(G)$. Previously, basic results were studied for $\lambda_1^{(2)}(C_m)$ for all *m* and $\lambda_1^{(n)}(C_m)$ for some *m* where $n \ge 3$. However, there were still gaps left unstudied due to case-by-case complexities. For these uncovered cases, a lower bound for $\lambda_1^{(n)}(C_m)$ will be proved. Then an algorithm will be proposed for finding an *n*-set distance labeling for $n \ge 3$ based on the proof of the lower bound. Every single case for $3 \le n \le 500$ will be verified by this same algorithm, which indicates that the upper bound is the same as the lower bound for all $n \le 500$.