Discrete Mathematics Seminar

Time:	Friday, 15 October 2010, 12:30–1:30 PM
Location:	238 Derrick Hall
Title:	The Fractional Metric Dimension of Graphs
Speaker:	Dr. S. Arumugam, National Centre for Advanced Research in Discrete Mathematics
	Kalasalingam University, India

Abstract:

A vertex x in a connected graph G is said to reslove a pair $\{u, v\}$ of vertices of G if the distance from u to x is not equal to the distance from v to x. A set S of vertices of G is a resolving set for G, if every pair of vertices are resolved by some vertex of S. The smallest cardinality of a resolving set for G, denoted by dim(G), is called the metric dimension of G. For the pair $\{u, v\}$ of vertices of G the collection of all resolving vertices is denoted by $R\{u, v\}$ and is called the resolving neighborhood for the pair $\{u, v\}$. A real valued function $g: V(G) \to [0, 1]$ is a resolving function of G if $g(R\{u, v\}) \ge 1$ for all distinct pair $u, v \in V(G)$. The fractional metric dimension of G is defined as $dim_f(G) = min\{|g| : g$ is a minimal resolving function of $G\}$, where $|g| = \sum_{v \in V} g(v)$. In this paper, we initiate a study of this parameter.