TEXAS STATE
 UNIVERSITY

The rising STAR of Texas

Discrete Mathematics Seminar

Time: \quad Friday, 11 March 2016, 2:15-3:15 PM
Location: 237 Derrick Hall
Title: \quad Solution to a Combinatorial Problem arising in Group Theory
Speaker: Dr. Eugene Curtin, Department of Mathematics

Abstract

: In a 2014 paper Thomas Keller conjectured that given any $n \times \infty$ matrix of n element sets $\left(S_{i, j}\right)$, it is possible to construct an $n \times \infty$ matrix ($x_{i, j}$) satisfying the following conditions: (i) For all i and $j, x_{i, j} \in S_{i, j}$. (ii) The first $n-2$ elements in each row are distinct and never repeated later in the row. (iii) For all t the n sets $\left\{x_{i, 1}, x_{i, 2}, \ldots, x_{i, t}\right\}$ are distinct.

He proved the $n=4$ case in his paper, and we will outline a proof for the general case. We will also show the following:

Let X be a subset of the Boolean lattice on $[n]$ satisfying the following conditions: (i) $\{i\} \in X$ for all $i \in[n]$. (ii) For all $A \in X$ with $|A| \leq n-2$ there exist elements $i \neq j$ in $[n]-A$ such that $A \cup\{i\} \in X$ and $A \cup\{j\} \in X$. Then X contains n disjoint chains of length $n-1$.

We conjecture that if $\left\{X_{i}\right\}_{i=1}^{n}$ is a collection of n subsets of the Boolean lattice on $[n]$ each satisfying (i) and (ii) above then there exist n disjoint chains C_{i} of length $n-1$ with $C_{i} \subset X_{i}$.

This Boolean lattice conjecture implies a stronger version of the infinite matrix result. There is a combinatorial-game version of the conjecture which is stronger still.

No specialized background is needed to follow the arguments. The techniques are elementary, with the Max-Flow Min-Cut Theorem and the Konig Infinity Lemma making guest appearances.

This is joint work with Suho Oh.

