Lower Bounds on the Distance Domination Number of a Graph

${ }^{1,3}$ Randy Davila, ${ }^{2}$ Caleb Fast, ${ }^{1}$ Michael A. Henning* and ${ }^{2}$ Franklin Kenter
${ }^{1}$ Department of Mathematics
University of Johannesburg
Auckland Park 2006, South Africa
Email: mahenning@uj.ac.za
${ }^{2}$ Computational and Applied Mathematics
Rice University
Houston, TX 77005, USA
Email: calebfast@gmail.com, fhk2@rice.edu

${ }^{3}$ Department of Mathematics
Texas State University-San Marcos
San Marcos, TX 78666, USA
Email: randyrdavila@gmail.com

Abstract

For an integer $k \geq 1$, a (distance) k-dominating set of a connected graph G is a set S of vertices of G such that every vertex of $V(G) \backslash S$ is at distance at most k from some vertex of S. The k-domination number, $\gamma_{k}(G)$, of G is the minimum cardinality of a k-dominating set of G. In this talk, we establish lower bounds on the k-domination number of a graph in terms of its diameter, radius and girth. We prove that for connected graphs G and $H, \gamma_{k}(G \times H) \geq \gamma_{k}(G)+\gamma_{k}(H)-1$, where $G \times H$ denotes the direct product of G and H.

[^0]
[^0]: *Research supported in part by the South African National Research Foundation and the University of Johannesburg

