Lower Bounds on the Distance Domination Number of a Graph

^{1,3}Randy Davila, ²Caleb Fast, ¹Michael A. Henning^{*} and ²Franklin Kenter

¹Department of Mathematics University of Johannesburg Auckland Park 2006, South Africa Email: mahenning@uj.ac.za

²Computational and Applied Mathematics Rice University Houston, TX 77005, USA Email: calebfast@gmail.com, fhk2@rice.edu

³Department of Mathematics Texas State University-San Marcos San Marcos, TX 78666, USA Email: randyrdavila@gmail.com

Abstract

For an integer $k \geq 1$, a (distance) k-dominating set of a connected graph G is a set S of vertices of G such that every vertex of $V(G) \setminus S$ is at distance at most k from some vertex of S. The k-domination number, $\gamma_k(G)$, of G is the minimum cardinality of a k-dominating set of G. In this talk, we establish lower bounds on the k-domination number of a graph in terms of its diameter, radius and girth. We prove that for connected graphs G and H, $\gamma_k(G \times H) \geq \gamma_k(G) + \gamma_k(H) - 1$, where $G \times H$ denotes the direct product of G and H.

 $^{^{*}\}mbox{Research}$ supported in part by the South African National Research Foundation and the University of Johannesburg