

Discrete Mathematics Seminar

Time:	Friday, 27 October 2017, 2:15 – 3:15 PM
Location:	237 Derrick Hall
Title:	Natural Generalizations of Graphs Part II: Commas, Topoi, & Homomorphisms
Speaker:	Dr. William Grilliette, Department of Mathematics, Texas State University

Abstract:

Continuing from Part I, this talk focuses on the abstract construction, properties, and homomorphisms of graph-like objects.

The classical categories \mathfrak{H} of hypergraphs and \mathfrak{M} of (undirected) multigraphs arise naturally as a comma category using the power-set functor \mathcal{P} . However, \mathcal{P} is wellknown not to preserve limit processes, and both \mathfrak{H} and \mathfrak{M} fail to be cartesian closed as a result, among other issues.

On the other hand, the category \mathfrak{Q} of quivers arises equivalently as both a comma category and a functor category. Consequently, \mathfrak{Q} can be represented as a topos of presheaves, inheriting a significant amount of structure immediately.

Thus, we suggest another model of hypergraphs, and multigraphs by extension, which is based on incidence rather than adjacency. The category \Re of these "incidence hypergraphs" will be a presheaf topos like \mathfrak{Q} . Indeed, \mathfrak{Q} and \mathfrak{R} are connected by several functors, which seem to encode matricial information into the graph structure itself.