Discrete Mathematics Seminar

Time: Friday, 8 October 2010, 12:30-1:30 PM
Location: 238 Derrick Hall
Title: Attainability of the Chromatic Numbers of Functigraphs
Speaker: Daniel Wang, Liberal Arts and Science Academy, Austin
George Qi, Westwood High School, Austin

Abstract:
Our research examines the chromatic numbers of functigraphs. Functigraphs are generalizations of permutation graphs, introduced by Chartrand and Harary. A functigraph, $C(G, f)$, is obtained from a graph G and a function $f: V(G) \rightarrow V\left(G^{\prime}\right)$ where G^{\prime} is a disjoint copy of G. The chromatic number of a graph, $\chi(G)$, is the least number of colors needed to assign a color to each vertex of G such that no two adjacent vertices are given the same color. Recently, Chen et al. determined the bounds on $\chi(C(G, f))$ in terms $\chi(G)$. Namely, they proved that

$$
\chi(G) \leq \chi(C(G, f)) \leq\left\lceil\frac{3}{2} \chi(G)\right\rceil .
$$

We extend upon this by proving that for any two positive integers a and b with $a \leq$ $b \leq\left\lceil\frac{3}{2} a\right\rceil$, there exists a graph G and function f on $V(G)$ such that $\chi(G)=a$ and $\chi(C(G, f))=b$. We then examine the lower and upper bounds of the chromatic number of functigraphs for any graph. For any function f on $V(G)$, we demonstrate sufficient conditions for $\chi(C(G, f))=\chi(G)$. In fact, the number of such functions is at least $(k-1) k^{k-1}$, where $k=\chi(G)$.

However, the upper for the chromatic number of functigraph is not always achievable. We improve the upper bounds on $\chi(C(G, f))$ for wheels from $\left\lceil\frac{3}{2} \chi(G)\right\rceil$ to $\left\lceil\frac{3}{2} \chi(G)\right\rceil-1$.
We also characterize functions to determine the values of $\chi(C(G, f))$ for all bipartite graphs and odd wheels.

