# Discrete Mathematics Seminar 

Time: Friday, 5 October 2012, 1:30-2:30 PM
Room: 238 Derrick Hall
Title: Bases for Finite Cyclic Groups
Speaker: Dr. Xingde Jia, Mathematics Department


#### Abstract

: For positive integers d and k , let $\mathrm{m}(\mathrm{d}, \mathrm{k})$ be the maximum positive integer m such that there exists a set A of k integers such that every integer is congruent to a sum of at most d elements of A modulo m . It is easy to see that $\mathrm{m}(\mathrm{d}, 1)=\mathrm{d}+1$ and $\mathrm{m}(1, \mathrm{k})=\mathrm{k}+1$. However, the computation of $m(d, k)$ in general is unexpectedly complex. It is still an open problem to have an exact formula for $\mathrm{m}(2, \mathrm{k})$. In this talk, I will discuss the current development of this and other related problems, and prove a lower bound for $\mathrm{m}(2, \mathrm{k})$. I will also discuss the computational aspects of this problem.


