Discrete Mathematics Seminar

Time: Friday, 13 April 2012, 12:30-1:30 PM
Location: 238 Derrick Hall
Title: Rectangle-free subsets of the grid: a new approach to an asymptotic result for the Zarankiewicz problem
Speaker: Dr. Jacob Manske, Mathematics Department

Abstract:

Let k be a positive integer, and let $[k]=\{1,2, \ldots, k\}$. A rectangle in $[k] \times[k]$ is a subset of the form $\left\{(x, y),\left(x+d_{1}, y\right),\left(x, y+d_{2}\right),\left(x+d_{1}, y+d_{2}\right)\right\}$ for $x, y, d_{1}, d_{2} \in \mathbb{N}$. In the 1950s, Zarankiewicz proposed the problem of finding $f(k)$, the size of the largest subset of $[k] \times[k]$ which does not contain a rectangle. In 1958, Kövari, Sós, and Turán were able to show that $\lim _{k \rightarrow \infty} \frac{f(k)}{k^{3 / 2}}=1$.
In this talk, we provide a survey of previous results, current state of the research on this and related problems (including new directions taken by Fenner, Gasarch, Glover, and Purewal in 2010), and a new proof of the 1958 result of Kövari, Sós, and Turán which relies on a connection to projective planes, utilizing a lemma from Mendelsohn in 1987.

