Discrete Mathematics Seminar

Time: Friday, 18 February 2011, 12:30-1:30 PM
Location: 238 Derrick Hall
Title: Monochromatic Square Garden: coloring the integer grid
Speaker: Dr. Jacob Manske, Mathematics Department

Abstract:

For $n \in \mathbb{N}$, let $[n]$ denote the integer set $\{0,1, \ldots, n-1\}$. For any subset $V \subset \mathbb{Z}^{2}$, let $\operatorname{Hom}(V)=\left\{c V+\mathbf{b}: c \in \mathbb{N}, \mathbf{b} \in \mathbb{Z}^{2}\right\}$. For $k \in \mathbb{N}$, let $R_{k}(V)$ denote the least integer N_{0} such that for any $N \geq N_{0}$ and for any k-coloring of $[N]^{2}$, there is a monochromatic subset $U \in \operatorname{Hom}(V)$.

The argument of Gallai ensures that $R_{k}(V)$ is finite whenever V is. We investigate bounds on $R_{k}(V)$ when V is a three or four-point configuration in general position. In particular, we prove that $R_{2}(S) \leq V W(8)$, where $V W$ is the classical van der Waerden number for arithmetic progressions and S is a square $S=\{(0,0),(0,1),(1,0),(1,1)\}$.

We will also visit new results including a computer-proven bound which is far, far smaller than the analytic bound achieved in the paper.

