Discrete Mathematics Seminar

Time: Friday, 7 October 2011, 12:30-1:30 PM
Location: 238 Derrick Hall
Title: Splitting the atom: on edge-colorings of complete graphs
Speaker: Dr. Jacob Manske, Mathematics Department

Abstract:

Let K_{N} denote the complete graph on N vertices with vertex set $V=V\left(K_{N}\right)$ and edge set $E=E\left(K_{N}\right)$. For $x, y \in V$, let $x y$ denote the edge between the two vertices x and y. Let L be any finite set and $\mathcal{M} \subseteq L^{3}$. Let $c: E \rightarrow L$. Let $[n]$ denote the integer set $\{1,2, \ldots, n\}$.

For $x, y, z \in V$, let $c(x y z)$ denote the ordered triple $(c(x y), c(y z), c(x z))$. We say that c is good with respect to \mathcal{M} if the following conditions obtain:
(1) $\forall x, y \in V$ and $\forall(c(x y), j, k) \in \mathcal{M}, \exists z \in V$ such that $c(x y z)=(c(x y), j, k)$;
(2) $\forall x, y, z \in V, c(x y z) \in \mathcal{M}$; and
(3) $\forall x \in V \forall \ell \in L \exists y \in V$ such that $c(x y)=\ell$.

We investigate particular subsets $\mathcal{M} \subseteq L^{3}$ and those edge colorings of K_{N} which are good with respect to these subsets \mathcal{M}. We also remark on the connections of these subsets and colorings to projective planes, Ramsey theory, and representations of relation algebras.

