Discrete Mathematics Seminar

Time:	Friday, 7 October 2011, 12:30–1:30 PM
Location:	238 Derrick Hall
Title:	Splitting the atom: on edge-colorings of complete graphs
Speaker:	Dr. Jacob Manske, Mathematics Department

Abstract:

Let K_N denote the complete graph on N vertices with vertex set $V = V(K_N)$ and edge set $E = E(K_N)$. For $x, y \in V$, let xy denote the edge between the two vertices x and y. Let L be any finite set and $\mathcal{M} \subseteq L^3$. Let $c : E \to L$. Let [n] denote the integer set $\{1, 2, \ldots, n\}$.

For $x, y, z \in V$, let c(xyz) denote the ordered triple (c(xy), c(yz), c(xz)). We say that c is good with respect to \mathcal{M} if the following conditions obtain:

- (1) $\forall x, y \in V$ and $\forall (c(xy), j, k) \in \mathcal{M}, \exists z \in V$ such that c(xyz) = (c(xy), j, k);
- (2) $\forall x, y, z \in V, c(xyz) \in \mathcal{M};$ and
- (3) $\forall x \in V \ \forall \ell \in L \ \exists y \in V \text{ such that } c(xy) = \ell.$

We investigate particular subsets $\mathcal{M} \subseteq L^3$ and those edge colorings of K_N which are good with respect to these subsets \mathcal{M} . We also remark on the connections of these subsets and colorings to projective planes, Ramsey theory, and representations of relation algebras.