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The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum
degree

δ(G ) ≥
(

1− 1

r

)
n

then G contains a subgraph which consists of bn/rc vertex-disjoint copies
of Kr .

This is a Kr -tiling

or a Kr -factor or even a Kr -packing

.

We will use
“factor” most often.

Notes

r = 2 follows from Dirac

r = 3 proven by Corrádi & Hajnal 1963

New proof by Kierstead & Kostochka 2008 (discharging)
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(Complementary form) If G is a simple graph on n vertices with minimum
degree

δ(G ) ≥
(

1− 1

r

)
n

then G contains a subgraph which consists of bn/rc vertex-disjoint copies
of Kr .

This is a Kr -tiling or a Kr -factor or even a Kr -packing. We will use
“factor” most often.

Notes

r = 2 follows from Dirac

r = 3 proven by Corrádi & Hajnal 1963
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The Alon-Yuster theorem

Theorem (Alon-Yuster, 1992)

For any α > 0 and graph H, there exists an n0 = n0(α,H) such that in
any graph G on n ≥ n0 vertices with

δ(G ) ≥
(

1− 1

χ(H)
+ α

)
n

there is an H-factor of G if |V (H)| divides n.

Komlós, Sárközy and Szemerédi, 2001, showed that αn can be replaced by
C = C (H), but not eliminated entirely.
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Multipartite graphs

Definition

The family of r -partite graphs with N vertices in each part is denoted
Gr (N).

Note that G ∈ Gr (N) =⇒ |V (G )| = rN.

Definition

The natural bipartite subgraphs of G are the ones induced by the pairs of
classes of the r -partition.
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Natural bipartite subgraphs

Example Consider the graph G :

The natural bipartite subgraphs:
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Minimum degree condition

Definition

If G ∈ Gr (N), let δ̄(G ) denote the minimum degree among all of the
natural bipartite subgraphs of G .

I.e., each vertex v ∈ V1 has at least δ̄(G ) neighbors in each of
V2,V3, . . . ,Vr .

Conjecture [Fischer]

If G ∈ Gr (N) and

δ̄(G ) ≥
(

1− 1

r

)
N

then G has a Kr -factor.
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Not a corollary

Observation

This does not follow from Hajnal Szemerédi.

Let G ∈ Gr (N) and δ̄(G ) ≥
(
1− 1

r

)
N. Then,

δ(G ) ≥ (r − 1)
(
1− 1

r

)
N

=
(

r−1
r

)2
(rN)

=
(
1− 2r−1

r2

)
|V (G )|

<
(
1− 1

r

)
|V (G )|, if r ≥ 2.

So the total degree is not large enough to invoke Hajnal-Szemerédi.
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Conjecture is false

...but only slightly false.

The bound δ̄(G ) ≥
(
1− 1

r

)
N is not sufficient for (r ,N) such that

r is odd, and

N is an odd multiple of r .

Example Let r = 3 and N = 3:
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General Example

Redraw the example with nonedges:

Γ3(3)

Γr (r)

This complement can be attributed to Paul Catlin, 1976, and was called a
“type 2 graph.”

Ryan Martin (Iowa State U.) Tiling on multipartite graphs 13 November 2009 10 / 23



General Example

Redraw the example with nonedges:

Γ3(3)

Γr (r)

This complement can be attributed to Paul Catlin, 1976, and was called a
“type 2 graph.”

Ryan Martin (Iowa State U.) Tiling on multipartite graphs 13 November 2009 10 / 23



Blowing up

For any N, with r | N, we can ”blow up” this graph by N/r :

Replace each vertex with N/r vertices.

Replace each edge with KN/r ,N/r .

Then, Γr (N) ∈ Gr (N).

If r | N, then Γr (N/r) has no Kr -factor iff r is odd and N/r is odd.
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Tripartite theorem

Theorem (Magyar-M, 2002)

There exists an N0 such that if N ≥ N0, G ∈ G3(N) and

δ̄(G ) ≥ 2

3
N,

then G has a K3-factor unless
G ≈ Γ3(N) and N/3 is an odd integer.

(N need not be divisible by 3.)
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Quadripartite theorem

Theorem (M-Szemerédi, 2008)

There exists an N0 such that if N ≥ N0, G ∈ G4(N) and

δ̄(G ) ≥ 3

4
N,

then G has a K4-factor.

There is no exceptional graph.
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Bipartite graph factors

Theorem (Zhao, 2009)

Let h be a positive integer. There exists an N0 = N0(h) such that if
N ≥ N0, h | N, and G ∈ G2(N) with

δ(G ) =

δ̄(G ) ≥
{

N
2 + h − 1, N/h is odd;

N
2 + 3h

2 − 2, N/h is even,

then G has a Kh,h-factor.

Moreover, there are examples that prove that this δ̄ condition cannot be
improved.
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Two-colorable graph factors

Note

If χ(H) = 2 and |V (H)| = h, then Kh,h-factor ⇒ H-factor.

Example.
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Tripartite graph factors

Theorem (M-Zhao, 2009+)

Let h be a positive integer and f (h) be the minimum integer such that:

∃N0 = N0(h) for which N ≥ N0, h | N, G ∈ G3(N),

δ̄(G ) ≥ h
⌈

2N
3h

⌉
+ f (h)

implies G has a Kh,h,h-factor. Then

f (h) = h − 1, if N/h ≡ 0 mod 6;
h − 2 ≤ f (h) ≤ h − 1, if N/h 6≡ 0 mod 3;
h − 1 ≤ f (h) ≤ 2h − 1, if N/h ≡ 3 mod 6.

Note

Both χ(H) = 3 and |V (H)| = h together imply a H-factor also.
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Other graph factors

The case analysis required to prove that δ̄(G ) ≥ (3/4 + ε)N is sufficient
for a Kh,h,h,h-factor would be long and difficult, using current methods.
However, we believe it could be done.

To prove the existence of an f (h) would be even more difficult.
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Other graph factors

No version of the following key lemma for r ≥ 5:

Almost-covering lemma (r = 3)

For every ∆ > 0, there exists an ε > 0 such that if G ∈ G3(N),

δ̄(G ) ≥
(

2

3
− ε

)
N

and T0 is a partial K3-factor of G with T0 < N − 3, then either

∃ a partial K3-factor T ′ with |T ′| > |T0| and |T ′ \ T0| ≤ 15 or

∃ 3 sets which are each of size N/3 but have pairwise density ≤ ∆.
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Best general bound

Theorem (Csaba-Mydlarz, 2009+)

Let r ≥ 5 and ε > 0. There exists an N0 = N0(r , ε) such that if N ≥ N0,
G ∈ Gr (N) and if

δ̄(G ) ≥
(

k

k + 1
+ ε

)
N, k = r + d4hre,

then G has a Kr -factor.

hr = 1 +
1

2
+

1

3
+ · · ·+ 1

r

This is the best bound for r ≥ 5.
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Critical chromatic number

Definition

Let H be a graph with

order: h = |V (H)|

chromatic number: χ = χ(H)

σ is the size of the smallest color class of H among all proper
χ-colorings of V (H).

The critical chromatic number of H, χcr(H) is

χcr(H) =
(χ− 1)h

h − σ
.

Fact

For any graph H:
χ(H)− 1 < χcr(H) ≤ χ(H)

Also, χcr(H) = χ(H) iff every proper χ-coloring of H is a equipartition.

χcr(H) was defined by Komlós, 2000.
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Use of critical chromatic number

Theorem (Komlós, 2000)

For every H and every n, divisible by |V (H)|, there exists a G of order n
with

δ(G ) =

⌈(
1− 1

χcr(H)

)
n

⌉
− 1

and no H-tiling.

Theorem (Komlós, 2000)

For every H and ε > 0, there exists n0 = n0(H, ε) such that if G has order
n ≥ n0 and

δ(G ) ≥
(

1− 1

χcr(H)

)
n

then G has an H-tiling that covers all but εn vertices in G.
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Theorem (Komlós, 2000)
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δ(G ) ≥
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n

then G has an H-tiling that covers all but εn vertices in G.

Kühn & Osthus, 2009, gave a characterization of many H for which

δ(G ) ≥
(

1− 1

χcr(H)

)
n + C ′

guarantees an H-tiling for C ′ = C ′(H).

Question

Does χcr provide a better minimum-degree parameter for finding an
H-tiling of an r -partite graph where r = χ(H)?

Ryan Martin (Iowa State U.) Tiling on multipartite graphs 13 November 2009 20 / 23



Possible solution techniques

Ideas from the Kierstead-Kostochka proof

I e.g., discharging

Ideas from the Csaba-Mydlarz proof

I there is a structure that might be modified to apply their main lemma.
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Open problems
Is it true that ∃C such that G ∈ G5(N) and δ̄(G ) ≥ (4/5)N implies
that there exists a partial K5-tiling of size (1− ε)N?

Is it true that, ∀ε > 0, ∃N0 = N0(ε) such that N ≥ N0, G ∈ G5(N)
and δ̄(G ) ≥ (4/5 + ε)N implies a K5-tiling?

Almost-covering question (r = 5)

Does there exist an absolute constant C such that:
For all ε > 0, if G ∈ G5(N),

δ̄(G ) ≥
(

4

5
+ ε

)
N

and T0 is a partial K5-factor of G with T0 < N − C , then ∃ a partial
K5-factor T ′ with |T ′| > |T0|?

Given a bipartite graph H, what is the minimum degree required to
ensure an H-factor in a bipartite graph, with appropriate divisibility
conditions?

I.e., (1/2 + ε)N is sufficient. What about (1− 1/χcr(H) + ε)N?
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KSSz01 J. Komlós, G.N. Sárközy and E. Szemerédi, Proof of the Alon-Yuster conjecture. Combinatorics (Prague, 1998).
Discrete Math. 235 (2001), no. 1-3, 255–269.

MM02 Cs. Magyar and R. Martin, Tripartite version of the Corradi-Hajnal theorem. Discrete Math. 254 (2002), no. 1-3,
289–308.

SZ03 A. Shokoufandeh and Y. Zhao, Proof of a tiling conjecture of Komlós. Random Structures Algorithms 23 (2003), no. 2,
180-205.

MSz08 R. Martin and E. Szemerédi, Quadripartite version of the Hajnal-Szemerédi theorem. Discrete Math. 308 (2008), no.
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