

## **Discrete Mathematics Seminar**

| Time:     | Friday, March 29, 2019, 2:15 - 3:15 PM                                |
|-----------|-----------------------------------------------------------------------|
| Location: | 330 Derrick Hall                                                      |
| Title:    | Automorphisms of some finite $p$ -groups                              |
| Speaker:  | Dr. Jeffrey Riedl, Department of Theoretical and Applied Mathematics, |
|           | University of Akron                                                   |

## Abstract:

Group theory is the branch of mathematics that provides a framework for describing the structural symmetry of objects in mathematics and in the natural world. If G is a group, then the set of all automorphisms of G forms a group denoted  $\operatorname{Aut}(G)$  which encodes all the information about the internal symmetry of G itself. Obtaining a full description of  $\operatorname{Aut}(G)$  is a difficult problem in general but one that is of interest to mathematicians. Suppose G is a finite group that is a subgroup of a larger group W whose automorphism group  $\operatorname{Aut}(W)$  is known. Let N(G) and C(G) denote the pair of subgroups of  $\operatorname{Aut}(W)$  consisting of respectively those automorphisms of W that fix G setwise and those that fix G elementwise. The quotient group N(G)/C(G) is naturally isomorphic to a subgroup of  $\operatorname{Aut}(G)$ . If we can compute N(G) and C(G)we may capture new information about  $\operatorname{Aut}(G)$ . For some finite p-groups G and some carefully-chosen groups W, the quotient represents most or all of  $\operatorname{Aut}(G)$ . We present results and discuss techniques related to this approach to the problem of describing  $\operatorname{Aut}(G)$ .