Discrete Mathematics Seminar

Time: Friday, 10 February 2012, 12:30-1:30 PM
Location: 238 Derrick Hall
Title: Primitive Normal Matrices and Covering Numbers of Finite Groups (Part I)
Speaker: Dr. Jian Shen, Mathematics Department
Time: Friday, 17 February 2012, 12:30-1:30 PM
Location: 238 Derrick Hall
Title: Primitive Normal Matrices and Covering Numbers of Finite Groups (Part II)
Speaker: Dr. Tim Bonner, Mathematics Department

Abstract

: In this two-talk series, we will cover results from the paper by Chillag, Holzman, and Yona [Primitive normal matrices and covering numbers of finite groups. Linear Algebra and its Applications, 403(2005): 165-177.] We hope to bring collaborations between graph theorists and group theorists in the Department.

In the first talk, Dr. Shen will cover the graph theory part on primitive normal matrices. A primitive matrix is a square matrix M with nonnegative real entries such that the entries of M^{r} are all positive for some positive integer r. The smallest such r is called the exponent of M, denoted $\exp (M)$. [Here is an equivalent definition for digraphs. A digraph G is primitive if, for some positive integer r, there is a $u \rightarrow v$ walk of length r for every pair u, v of vertices of G. The minimum such r is called the exponent of G, denoted $\exp (G)$. So a matrix M is primitive iff the adjacency digraph of M is primitive.] The following two results will be presented: (1) Let m be the degree of the minimal polynomial of a primitive digraph M, and let D be the diameter of the adjacency digraph of M. Then $D \leq m-1$. [Comments: This was the first step towards the bound $\exp (M) \leq D^{2}+1$ which was conjectured by Hartwig in 1984 and proved in 1993 by Dr. Shen (a Master's student at that time). The $\left(D^{2}+1\right)$-bound is still the best even today.] (2) Let M be an $n \times n$ primitive matrix of normal type; that is, $M M^{T}=M^{T} M$, where M^{T} denotes the transpose matrix of M. Then $\exp (M) \leq(\lceil n / 2\rceil+1)(m-1)$.

In the second talk, Dr. Bonner will cover the group theory part on covering numbers of finite groups.

