Discrete Mathematics Seminar

Time: Friday, 8 February 2013, 1:00-2:00 PM
Room: 238 Derrick Hall
Title: New Result on Extremal Bases for Finite Cyclic Groups
Speaker: Dr. Jian Shen, Mathematics Department

Abstract

:

For positive integers d and k , let $\mathrm{m}(\mathrm{d}, \mathrm{k})$ be the maximum positive integer m such that there exists a set A of k integers such that every integer is congruent to a sum of at most d elements of A modulo m. It is easy to see that $\mathrm{m}(\mathrm{d}, 1)=\mathrm{d}+1$ and $\mathrm{m}(1, \mathrm{k})=\mathrm{k}+1$. However, the computation of $m(d, k)$ in general is unexpectedly complex. It is still an open problem to have an exact formula for $\mathrm{m}(2, \mathrm{k})$. In 1978, Mrose proved that $\mathrm{m}(2, \mathrm{k})>2 \mathrm{k}^{2} / 7+\mathrm{O}(\mathrm{k}) \approx$ $0.2857 \mathrm{k}^{2}+\mathrm{O}(\mathrm{k})$. In 2012 a group of REU students (Bolcher, Hampton, and Linden under the supervision of Dr. Xingde Jia) proved that $\mathrm{m}(2, \mathrm{k})>37 \mathrm{k}^{2} / 121+\mathrm{O}(\mathrm{k}) \approx 0.3057 \mathrm{k}^{2}$ $+\mathrm{O}(\mathrm{k})$.

In this talk, we will further push the lower bound to $m(2, k)>(1-\varepsilon) k^{2} / 3+O(k)$ for any positive real ε. This is joint work with Dr. Xingde Jia.

