Discrete Mathematics Seminar

Time:	Friday, 14 October 2011, 1:00–2:00 PM
Location:	329 Derrick Hall
Title:	Continued Fractions and Nathanson Heights
Speaker:	Dr. Jian Shen, Mathematics Department

Abstract:

Let p be a prime, and let \mathbb{Z}_p denote the field of integers modulo p. The Nathanson height of a point $\mathbf{r} = \langle r_1, ..., r_d \rangle \in \mathbb{Z}_p^d$ is defined as $h_p(\mathbf{r}) = \min\{\sum_{i=1}^d (kr_i \mod p) : k = 1, ..., p-1\}$. In 2007 Sullivan and Nathanson applied the concept of Nathanson height in their work on a special case (Cayley digraphs $\operatorname{Cay}(\mathbb{Z}_p, \{r_1, ..., r_d\})$ of a graph theory conjecture raised by Chudnovsky, Seymour, and Sullivan.

An explicit formula for the Nathanson height is not known for general d. For d = 2O'Bryant recently proved that $h_p(\langle 1, r \rangle) = \min\{q_{2k}(r+1) - p_{2k}p : 0 \le k < n/2\}$, where p_i/q_i is the i^{th} convergent of the continued fraction expansion of r/p. We study the properties of continued fractions and further simplify the above expression for $h_p(\langle 1, r \rangle)$.

This is joint work with the following three undergraduate students under an 8-week summer REU (Research Experience for Undergraduates) program supported by NSF: Nina Freeman, Southwestern University Hunter Merrill, Mississippi State University Ian Philipp, University of Louisville