Discrete Mathematics Seminar

Time: Friday, 14 October 2011, 1:00-2:00 PM
Location: 329 Derrick Hall
Title: Continued Fractions and Nathanson Heights
Speaker: Dr. Jian Shen, Mathematics Department

Abstract:

Let p be a prime, and let \mathbb{Z}_{p} denote the field of integers modulo p. The Nathanson height of a point $\mathbf{r}=\left\langle r_{1}, \ldots, r_{d}\right\rangle \in \mathbb{Z}_{p}^{d}$ is defined as $h_{p}(\mathbf{r})=\min \left\{\sum_{i=1}^{d}\left(k r_{i} \bmod p\right): k=1, \ldots, p-1\right\}$. In 2007 Sullivan and Nathanson applied the concept of Nathanson height in their work on a special case (Cayley digraphs $\operatorname{Cay}\left(\mathbb{Z}_{p},\left\{r_{1}, \ldots, r_{d}\right\}\right)$ of a graph theory conjecture raised by Chudnovsky, Seymour, and Sullivan.

An explicit formula for the Nathanson height is not known for general d. For $d=2$ O'Bryant recently proved that $h_{p}(\langle 1, r\rangle)=\min \left\{q_{2 k}(r+1)-p_{2 k} p: 0 \leq k<n / 2\right\}$, where p_{i} / q_{i} is the $i^{\text {th }}$ convergent of the continued fraction expansion of r / p. We study the properties of continued fractions and further simplify the above expression for $h_{p}(\langle 1, r\rangle)$.

This is joint work with the following three undergraduate students under an 8-week summer REU (Research Experience for Undergraduates) program supported by NSF:
Nina Freeman, Southwestern University
Hunter Merrill, Mississippi State University
Ian Philipp, University of Louisville

