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Abstract:

First a general framework for a class of second order (®, p, n, #)—invexities is introduced,
and then some parameter-free sufficient efficiency conditions leading to e—efficient solu-
tions to multiobjective discrete minmax fractional programming problems of the form (P)
are established. The obtained results generalize and unify a wider range of investigations
in the literature on applications to multiobjective fractional programming, while these
findings can be utilized as a resource in order to measure the efficiency or productivity
of a system. We consider based on the generalized (®, p,n, §)—invexities of functions, the
following multiobjective fractional programming problem:
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subject toz € Q ={x € X : Hj(z) <0,j € {1,2,---,m}},

where X is an open convex subset of " (n-dimensional Euclidean space), f; and g; for
ie{l,---,p} and Hj for j € {1, --,m} are real-valued functions defined on X such that
fi(x) >0, gi(x) >0 fori € {1,---,p} and for all z € Q. Here @) denotes the feasible set of

(P).
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The obtained results can also be applied to discrete minmax multiobjective fractional
integral programming (optimal control) problems of the form (P*).

Consider the fractional programming for variational problem of the following form:
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(P*) min Z max -——————

subject to x € PS(T,R"),z(a) = o, x(b) = 3,
b

/hj(t,x,:i:)dtg(),jsz{1,2,...,m},
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where functions f%, ¢*,i € p and h’,j € m are continuous in ¢ and have continuous partial
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derivatives with respect to x and @; T = [a,b] denotes the time space, and PS(T, R")
stands for the state space of all piecewise smooth functions z : T'— R™ with norm defined
by ||z = ||z||, + || D], and D is the differential operator on PS(T', R") defined by
b
y = Dz if and only if z(t) = z(a) + /y(s)ds.
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