Discrete Mathematics Seminar

Time:Friday, 7 February 2014, 1:00 – 2:00 PMLocation:238 Derrick HallTitle:The (normalized) laplacian eigenvalue of signed graphsSpeaker:Dr. Ying Liu, Shanghai Lixin University of Commerce

Abstract:

A signed graph $\Gamma = (G, \sigma)$ consists of an unsigned graph G = (V, E) and a mapping $\sigma : E \to \{+, -\}$. Let Γ be a connected signed graph and $L(\Gamma), NL(\Gamma)$ be its laplacian matrix and normalized laplacian matrix, respectively. Suppose $\mu_1 \ge \cdots \ge \mu_{n-1} \ge \mu_n \ge 0$ and $\lambda_1 \ge \cdots \ge \lambda_{n-1} \ge \lambda_n \ge 0$ are the laplacian eigenvalues and the normalized laplacian eigenvalues of Γ , respectively. We give two new lower bounds on λ_1 which are both stronger than Li's bound and obtain a new upper bound on λ_n which is also stronger than Li's bound. In addition, Yao-ping Hou proposed a conjecture for a connected signed graph Γ : $\sum_{i=1}^{k} \mu_i > \sum_{i=1}^{k} d_i \ (1 \le k \le n-1)$. We investigate $\sum_{i=1}^{k} \mu_i \ (1 \le k \le n-1)$ and partly solve the conjecture.